储能系统七大主要进化路线
2024-01-18 08:38:02
要实现储能平价,储能行业必须走向规模化健康发展,并解决商业模式、安全稳定性、平准化、度电成本LCOE等方面的难点。从技术角度,围绕安全与降本,储能产品的进化路线主要体现在大容量、长寿命、高效率、高安全、储能消防、高度集成以及智能化等方面。
01
大容量
容量向上突破的同时,280Ah及以上大容量电芯已经陆续量产交付。
瑞浦兰钧宣布其320Ah储能电芯将于Q3量产;
02 电芯循环长寿命
例如,当储能电池的循环寿命提高到10000次时,储能成本可以降至每千瓦时1000元以下,考虑到充放电损耗和折旧,每度电成本将低于0.16元。随着技术的发展,各大企业都在积极研发循环寿命更长的电芯产品,许多企业的储能电芯循环寿命已突破12000次。
03 高效率 04 更安全 05 储能消防
业主招标要求中一般会写到储能效率要求不低于85%。5月30日,新疆自治区市场监督管理局发布的《光伏电站储能系统配置技术规范》征求意见稿中,针对储能系统技术要求,提出锂离子电池储能系统能量转换效率不应低于92%,铅炭电池储能系统能量转换效率不应低于86%,液流电池储能系统能量转换效率不应低于65%。
液冷系统散热效率、散热速度和均温性好,但成本较高。储能温控方面,液冷技术渐渐成为大型储能系统的主流方案,进入大规模应用阶段。对比风冷,采用液冷系统电芯,电芯温差<3℃,提高了系统可靠性。
电化学储能电站的消防安全问题一直备受关注。7月1日开始实施的《电化学储能电站安全规范》将消防门槛显著提高,储能产业逐步迈向Pack级消防。
以往,由于储能系统消防验收制度尚未健全,部分地区电化学储能电站消防验收方面基本属于“裸跑”的状态,无法保障电化学储能电站的安全运行,也给行业带来诸多乱象,对行业的长远发展带来诸多弊端。在国家标准《电化学储能电站安全规程》中,对于储能消防提出明确要求,总结起来有以下4点:
1)事前预警
强调“电化学储能电站应设置火灾自动报警系统”“电池室/舱内应设置可燃气体探测器、温感探测器烟感探测器等火灾探测器,每个电池模块可单独配置探测器”。
2)系统联动
强调“电化学储能电站的消防系统、通风空调系统、视频与环境监控系统之间应具备联动功能”。
3)精准消防
强调“电池舱应设置自动灭火系统,锂电池舱自动灭火系统的最小保护单元宜为电池模块,每个电池模块可单独配置灭火介质喷头或探火管”。
4)抑制复燃
强调“灭火介质应具有良好绝缘和降温性能,自动灭火系统应满足扑灭火灾和持续抑制复燃要求。
06 高度集成
专业系统集成技术应该是将电化学技术、电力电子技术和电网支撑技术深度融合的系统级产品,而不是简单的“搭积木”。储能系统集成商要最大化消除热失控风险,电芯要有充分的均衡能力。储能系统集成商应该具备产品思维,并对系统级产品进行充分的验证、测试,最后才能交付给客户。
07 智能化
未来,全生命周期发电量持续提升,控制精度不断提高,系统设计愈发便利,运维模式更加简洁是永恒不变的发展方向。
储能系统通过EMS参与电网调度、虚拟电厂调度、源网荷储互动等。作为储能系统的“大脑”,未来EMS核心竞争力主要在于软件开发能力和能量优化策略设计能力。
BMS担任系统中的感知角色,主要功能是监控电池储能单元内各电池运行状态,保障储能单元安全运行。BMS功能已由监测、通讯、保护、显示、存储等基本功能,向电池系统安全诊断、长寿命运维、系统经济性指标诊断等高级功能方向发展。
2025 05-06
TOPCon 电池提效工艺
[list:subtitle]
1)边缘钝化:预计提效 0.2%+现有组件普遍以半片电池的形式封装而成,因此基于整片硅片沉积功能层之后,需要通过激光切割得到半片电池。电池片切割后产生新的表面,而新表面往往存在大量悬挂键、杂质、晶格缺陷等复合中心,导致效率损失。边缘钝化是采用原子层沉积(ALD)技术指在半片电池的新鲜表面沉积 AlOx 钝化层以减少
2025 04-16
美国“关税大棒”,能“打死”中国光伏吗?
[list:subtitle]
4月8日(美东时间),白宫新闻秘书莱维特在白宫新闻发布会上宣布,自4月9日凌晨00:01起(北京时间4月9日中午12:01),美国将对所有中国进口商品加征50%的关税。加上此前已经生效的20%、34%关税,美国针对中国的关税达到了史无前例的104%。这意味着,中美之间的正常贸易之门将实质性关闭。美国特朗普政府疯狂挥舞“关税大棒”
2024 11-12
带你了解储能电池和动力电池有什么区别?
[list:subtitle]
储能电池和动力电池在多个方面存在区别,主要包括以下几点:1、应用场景不同• 储能电池:主要用于电力储存,如电网储能、工商业储能、家庭储能等,以平衡电力供需,提高能源利用效率和用能成本。• 动力电池:则专门用于为电动汽车、电动自行车、电动工具等移动设备提供动力。2、充放电特性• 储能电池:通常具有较低的充放
2024 09-11
高低温对锂电池性能的影响
[list:subtitle]
锂电池中的磷酸铁锂电池和三元锂电池具有能量密度高、工作温度范围广、循环寿命长和安全可靠的优点,被广泛用于新能源汽车的动力电池。但锂电池在充放电过程中产生可逆反应热、欧姆热、极化热和副反应热,电池的发热量主要受其内阻及充电电流的影响动力电池是非常“娇贵”的。温度对动力电池整体性
2025 06-25
BC vs TOPCon终极对决:谁将主宰光伏未来?
[list:subtitle]
光伏行业的技术之争从未停歇,从单晶vs多晶,到PERC vs N型,如今战火已烧至BC(背接触)和TOPCon(隧穿氧化层钝化接触)两大技术路线。隆基押注BC,晶科、天合力挺TOPCon,双方隔空交锋,互晒实证数据,火药味十足!2025年,这两大技术谁能称王?让我们深度解析!一、技术PK:效率、成本、应用场景,谁更胜一筹?1. 效率之
2025 06-16
2025年SNEC光伏展这些你注意到了没?
[list:subtitle]
6月11至13日,号称“光伏春晚”的SNEC光伏展如期而至。近两年光伏行情持续磨底,光伏人苦不堪言。低迷的市场环境使得整个行业也陷入低压的氛围之中。然而从SNEC展会现场来看,虽然不比过去两年,热闹程度依然不低。尤其是龙头企业的展台依旧是人气爆棚,寒意逼人的市场行情似乎并没有影响光伏人的出来“见朋友”、“会对手”
2025 04-02
目前TOPCon 凭什么碾压 BC,主导光伏市场?
[list:subtitle]
近日,部分地区在风光项目开发建设相关通知中提及,2025 年计划实施 2GW 左右光伏领跑计划,并要求组件转换效率达 24.2% 以上。此消息一经发布,便引发了业内广泛关注与讨论。不少业内人士指出,在当前光伏行业发展态势下,单纯强调组件的正面转换效率恐有不妥,应着重强调综合效率的价值,以此避免引发新一轮的 “内
2024 08-12
储能电池和动力电池有什么区别?
[list:subtitle]
储能电池和动力电池在多个方面存在区别,主要包括以下几点:1、应用场景不同• 储能电池:主要用于电力储存,如电网储能、工商业储能、家庭储能等,以平衡电力供需,提高能源利用效率和用能成本。• 动力电池:则专门用于为电动汽车、电动自行车、电动工具等移动设备提供动力。2、充放电特性• 储能电池:通常具有较低的充放
Al2O3背钝化是一种常用的背钝化方法。该方法通过在电池片背面形成一层氧化铝(Al2O3)薄膜来防止电荷的复合损失。氧化铝薄膜可以通过原子层沉积(ALD)等技术在电池片背面均匀地生长。该薄膜具有较高的电阻率和较低的导电性,能够有效地阻止电荷从电池片背面流失,从而提高电池片的光电转换效率。
SiNx背钝化是另一种常见的背钝化方法。该方法通过在电池片背面形成一层氮化硅(SiNx)薄膜来阻止电荷的复合损失。氮化硅薄膜可以通过化学气相沉积(PECVD)等技术在电池片背面生长。该薄膜具有较高的电阻率和较低的导电性,能够有效地阻挡电荷从电池片背面流失,提高电池片的光电转换效率。
除了上述两种方法外,还有一些其他的背钝化技术,如Al2O3/SiNx多层结构背钝化、全反射背钝化等。这些技术通过不同的手段,在电池片背面形成一层具有较高电阻率和较低导电性的材料层,阻止电荷的复合损失,提高光电转换效率。
2024 06-19
电池片为什么要钝化!
[list:subtitle]
电池片背钝化是一种用来减少电池片背面电荷复合损失的技术,电池片表面存在大量缺陷,会与少数载流子发生复合,导致载流子损失,降低电池性能。通过在电池片表面形成钝化层,可以减少表面缺陷,从而降低表面复合速率,提高电池的少子寿命和开路电压,显著提高太阳能电池的转化效率。下面详细介绍电池片背钝化的原理。太阳能
2024 04-24
常见的PCB 制造缺陷
[list:subtitle]
介绍PCB(即印刷电路板)对于大多数现代硬件至关重要。然而,它们在制造过程中很容易出现缺陷。这些缺陷可能会导致 PCB 令人失望,并对产品执行和稳定的质量产生不利影响。这本影响深远的指南分析了最主要的 PCB 制造沙漠,调查了其潜在驱动因素,并针对有限的机会给出了可能的答案。PCB 由层叠在绝缘基板上的导电铜迹线组成
2025 09-15
为什么说AI发展的尽头是工业?
[list:subtitle]
第一次工业革命,人类迈入了蒸汽时代,摆脱了对风、水、畜等自然力的依赖,学会了规模化生产。第二次工业革命,人类迈入了电气时代,钢铁巨兽昼夜不停的咆哮着,改造了人类社会的方方面面。第三次工业革命,人类迈入了信息时代,工业和数据开始密不可分,在各类高精尖产品之外,人类还创造出了“虚拟世界”。身处21世纪,如
2024 03-29
锂电池内阻那些事
[list:subtitle]
内阻是锂电池在工作时,电流流过电池内部受到的阻力。根据测试方法,可以分为交流内阻和直流内阻。电池内阻是鉴定锂离子电池质量好坏的一项重要参数,电池内阻大,会产生大量焦耳热引起电池温度升高,导致电池放电工作电压降低,放电时间缩短,对电池性能、寿命等造成严重影响。在验证各因素对锂电池的电化学性能试验中,内