高低温对锂电池性能的影响
2024-09-11 11:01:04
锂电池中的磷酸铁锂电池和三元锂电池具有能量密度高、工作温度范围广、循环寿命长和安全可靠的优点,被广泛用于新能源汽车的动力电池。但锂电池在充放电过程中产生可逆反应热、欧姆热、极化热和副反应热,电池的发热量主要受其内阻及充电电流的影响
动力电池是非常“娇贵”的。温度对动力电池整体性能有非常显著的影响,主要体现在使用性能、寿命和安全性三个方面。动力电池在电动汽车中的应用,一般要综合考虑温度对电池性能、寿命和安全的影响以确定电池最优工作范围,并在此温度范围内获得性能和寿命的最佳平衡。普遍认为电池最佳工作温度区间为20℃~30℃,实际项目中需根据电池相关热测试结果,确定电池的最佳工作温度。
锂电池容量会随着温度的升高而变化,通过测试发现,温度每上升1℃容量就上升原来的0.8%,但温度的升高也会损坏电池,电池循环寿命和容量都会逐渐降低。根据试验,在常温25℃的环境下,如果温度升高6~10℃时,会因为高温增加电池的浮充电电流而导致电池的寿命减少一半。由于过充电量的积累,电池的循环寿命缩短。
锂电池的容量随着温度的升高而增加。如果电池温度升高,总放电不变,放电深度就会减小。当电池的温度上升到45℃时,可以延长使用寿命。如果电池在温度高于50℃的环境下充电,酸会加速在蓄电池极板上的腐蚀,而且温度升高会加速电池外壳的老化。
温度的变化使得锂电池可用容量会有不同程度的衰减,具体参考程度为:-10℃时可用容量为70%,0℃时可用容量为85%,25℃时可用容量为100%。因此,天气变冷电池性能下降为正常现象,当温度降低时,电池放电电压也大幅降低,这样电池在低温放电时就会更快的到达放电截止电压,从而造成低温放电容量明显低于常温容量。
相信大家都有类似感受,锂电池冬天使用时间比夏天短。可见锂电池性能是受环境温度影响的。在所有的环境因素中,温度对锂电池的充放电性能影响最大。一般锂电池行业的人都知道,锂电池的充放电状态是否稳定,温度的变化起到了很大的影响因素,锂电池在高温和低温环境下充放电,锂电池的容量保持率就有所下降。
需要向大家说明的是,锂离子电池低温下的容量并非消失了,而只是无法在正常电压范围(≥3.0V)内全部放出而已,如果可以将放电截止电压继续下延,那就可以将剩余的容量放出。
在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降
图1是锂离子电池在不同低温下的放电容量曲线示意图(这里用来表示一般的变化趋势)。跟室温20℃相比,低温-20℃下容量衰减已经比较明显,到-30℃是容量损失更多,-40℃下容量连一半都不到了。
图1 锂离子电池在低温下的容量衰减
这里看一下影响低温性能的因素。通过对比容量和电解液电导率关系(图2)可以看到,温度越低,电池电解液的电导率越低。当电导率下降之后,溶液传导活性离子的能力就下降,表现为电池内部反应的阻力就会增加(这个阻力在电化学里面用阻抗表示),造成放电能力下降,即容量下降。更进一步,通过测量电池内部各部分(正极、负极、电解液)阻抗可以看到各部分对电池阻抗的影响(图3)。当温度<-10℃左右,正极、负极(图中以石墨为例)的界面阻抗快速增加,而电解液的阻抗大概在-20℃左右之后快速上升,这几个阻抗综合结果就表现为电池阻抗在<-10℃左右快速上升(图中用Li-ion cell表示)。
图2 不同温度下电池容量和电解液电导率关系
图3 不同温度下电池的内部各部分的阻抗大小
相对于低温放电,锂离子电池低温充电的表现则更加不尽如人意,在低温充电低于0会增大电池内压并可能时安全阀开启,首先,低温下的充电会快速达到恒压阶段、并会一定程度上降低充电容量、同时增加充电时间,不仅如此,锂离子电池在低温充电时,锂离子可能来不及嵌入石墨负极当中,从而析出在负极表面形成金属锂枝晶,这一反应会消耗电池中的可以反复充放电的锂离子、并大幅降低电池容量,析出的金属锂枝晶也可能会刺穿隔膜,从而影响安全性能。
锂离子电池低温放电容量会降低,但是经过常温充放电后可以恢复,是可逆的容量损失;但是低温充电会造成析锂,是永久性的容量损失。由于低温充电析锂的危害更大,因此锂离子电池的低温充电要比低温放电管控的更严。
冬天充电时,室外温度较低,环境低于0℃时,出现电池充电速度下降,甚至可能无法充电,此为正常现象,请将电池放在适宜的环境温度下进行充电,保证充电效果。
锂电池温度太高,超过45℃锂离子电池越来越广泛地应用到人们的生产生活当中,这使得它的温度环境成为关注的要点,相对来说,锂电池更容易在高温环境下产生安全问题,因此,必须对锂电池进行高温性能的测试,并与其常温测试数据相比较。当锂离子电池滥用或误用时,如高温下使用或充电器控制失效,可能会引发电池内部发生剧烈的化学反应,产生大量的热,若热量来不及散失而在电池内部迅速积聚,电池可能会出现漏液、放气、冒烟等现象,严重时电池发生剧烈燃烧且发生爆炸。
高温下电池发生的化学反应主要包括:
(1)SEI膜的分解:具有保护作用的膜是亚稳态的,在90-120℃会发生分解放热。
(2)嵌入锂与电解液的反应:在120℃以上,膜无法隔断负极与电解液的接触,嵌入负极的锂与电解液发生放热反应。
(3)电解液分解:在高于200℃时发生分解并放热。
(4)正极活性材料分解:在氧化状态,正极材料会放热分解并放出氧气,氧气又与电解液发生放热反应,或者正极材料直接与电解液反应。
(5)嵌入锂与氟化物粘结剂的放热反应。
法国著名电池公司Saft曾经通过2Ah圆柱电池(正极材料NCM,使用PVdF粘结剂,负极材料碳,使用CMC/SBR粘结剂)研究了高温对电池性能的的影响,对比了两个电池在不同高温下的情况:
B2电池-首先在60℃循环2次,然后在85℃下循环
B3电池- 首先在60℃循环2次,然后在120℃下循环
从图4可以看到,B2电池在85℃下循环26次之后,容量损失大约7.5%,电池阻抗增加100%;B3电池在120℃下循环25次之后,容量损失大约22%,电池阻抗增加高达1115%。
图4 B2、B3电池在高温下的循环曲线和电池阻抗增加曲线
采用图5的模型说明高温120℃下电池正极的变化。在120℃下,部分正极粘结剂PVdF从Part 1区域迁移到正极表面,这造成Part 1区域的粘结剂含量下降,活性材料NMC材料由于粘结剂的缺失,造成了电化学反应的能力下降。在Part 2区域,这部分是正极的主体,粘结剂含量正常,高温影响不大,活性材料可以正常进行反应。
通过分析负极表面可以看到高温对负极的影响(图6)。图6a是负极的初始状态,在85℃下循环之后,负极表面出现了常见的固体电解质相(图6b负极表面被新生成的物质覆盖,造成表面形貌跟初始形貌的不同,有些小的球形物质。SEI:Solid Electrolyte Interface)。当温度上升在120℃时,生成了更多的SEI(图6c,负极表面被更多的颗粒覆盖),消耗了更多的活性锂离子,造成了容量的下降。
工作温度过高:一方面使长期处于低电位的阳极还原电解液,造成活性锂离子的损失, 导致电化学性能的下降;另一方面,高温导致阳极还原电解液的副反应增加,反应的无机产物沉积在阳极表面,阻碍锂离子的脱嵌,加速电池的老化。高温下电池副反应增加,如负极表面的SEI 膜会发生分解、破裂或者溶解等,从而导致高温下循环过程中不断消耗锂离子,容量下降较快。
AhmadA. Pesaran 研究表明, 当电池工作温度超过40℃后,每增加10℃,电池的循环寿命就会减半。电池组在新能源汽车电池仓内排列紧密,单体电池产生的热量累积使电池组内部出现温差,导致单体电池衰减速率不同,破坏电池组的同一性,电池组性能降低。
电池的温度与充放电电流呈正相关,当小电流充放电时,电池组的最高温度位置在其中间不易与外界发生热交换的位置, 当大电流充放电或极耳结构设计不合理时,电池组的最高温度在极耳处。
因此,根据动力电池的特性和工作环境合理设计电池散热系统, 不仅可提升整车续航性能, 也可提升整车的安全可靠性。
电池温差主要分为两种:电池内部温差,表现为电池温度均匀性;电池单体之间的温差,表现为电池温度一致性。
内部温差产生原因:一般在低温加热工况或水冷系统高温散热工况,电池模组处于单侧加热或单侧冷却时,因电池单体本身热阻较大,会出现较大内部温差。该温差与电池内部结构和材料组份有关,从热管理系统设计角度较难避免。
单体间温差产生原因:电池单体之间温差主要由电池模组布置、电池热管理结构决定,可通过优化热管理设计减小温差。
单体内部温差对电池影响
电池内部温差过大会造成电池内部阻抗不均、电流分布不均、产热不均,进而影响电池使用性能、加快电池容量衰减,但一般各单体间差异较小,对一致性影响较小。
单体间温差对电池影响
电池单体间温差过大会造成总成内各电池单体使用性能、容量衰减速率不一致,由于电池组内电池单体串联,任何一个电池单体性能下降、容量衰减都会影响总成的整体表显,因此对电池温度一致性控制显得非常重要。
另外,单体间温差对电池会产生持续累积的影响,温度高的单体老化快,产热量更大,更易产生高温。
锂电池种类的不同,其工作温度范围也就不同。温度过高或过低都会影响锂电池的性能,严重的甚至可能缩短电池的使用寿命。为了有效充电,锂电池环境温度范围应在20-30℃之间,
总的来说,影响电池高温、低温的因素可以概括为:电解液的电导率、界面阻抗、SEI膜等,这些因素综合作用在一起,影响了电池的性能。一般的来说,提高电池各组分的电导率或者导电性(包括选择导电性更好的活性材料、优化电解液成分、改善负极SEI膜成分、抑制正极表面物质的溶出等),从而降低电池整体的阻抗,对于提升高温、低温性能是有所帮助的。锂离子电池对温度的适应性就跟人体一样,过高、过低的温度都不利于其发挥最大的功能,选择合适的材料、优化结构设计、定制合适的使用条件,才能充分发挥其性能。
2025 05-06
TOPCon 电池提效工艺
[list:subtitle]
1)边缘钝化:预计提效 0.2%+现有组件普遍以半片电池的形式封装而成,因此基于整片硅片沉积功能层之后,需要通过激光切割得到半片电池。电池片切割后产生新的表面,而新表面往往存在大量悬挂键、杂质、晶格缺陷等复合中心,导致效率损失。边缘钝化是采用原子层沉积(ALD)技术指在半片电池的新鲜表面沉积 AlOx 钝化层以减少
2025 04-16
美国“关税大棒”,能“打死”中国光伏吗?
[list:subtitle]
4月8日(美东时间),白宫新闻秘书莱维特在白宫新闻发布会上宣布,自4月9日凌晨00:01起(北京时间4月9日中午12:01),美国将对所有中国进口商品加征50%的关税。加上此前已经生效的20%、34%关税,美国针对中国的关税达到了史无前例的104%。这意味着,中美之间的正常贸易之门将实质性关闭。美国特朗普政府疯狂挥舞“关税大棒”
2024 11-12
带你了解储能电池和动力电池有什么区别?
[list:subtitle]
储能电池和动力电池在多个方面存在区别,主要包括以下几点:1、应用场景不同• 储能电池:主要用于电力储存,如电网储能、工商业储能、家庭储能等,以平衡电力供需,提高能源利用效率和用能成本。• 动力电池:则专门用于为电动汽车、电动自行车、电动工具等移动设备提供动力。2、充放电特性• 储能电池:通常具有较低的充放
2024 09-11
高低温对锂电池性能的影响
[list:subtitle]
锂电池中的磷酸铁锂电池和三元锂电池具有能量密度高、工作温度范围广、循环寿命长和安全可靠的优点,被广泛用于新能源汽车的动力电池。但锂电池在充放电过程中产生可逆反应热、欧姆热、极化热和副反应热,电池的发热量主要受其内阻及充电电流的影响动力电池是非常“娇贵”的。温度对动力电池整体性
2025 06-25
BC vs TOPCon终极对决:谁将主宰光伏未来?
[list:subtitle]
光伏行业的技术之争从未停歇,从单晶vs多晶,到PERC vs N型,如今战火已烧至BC(背接触)和TOPCon(隧穿氧化层钝化接触)两大技术路线。隆基押注BC,晶科、天合力挺TOPCon,双方隔空交锋,互晒实证数据,火药味十足!2025年,这两大技术谁能称王?让我们深度解析!一、技术PK:效率、成本、应用场景,谁更胜一筹?1. 效率之
2025 06-16
2025年SNEC光伏展这些你注意到了没?
[list:subtitle]
6月11至13日,号称“光伏春晚”的SNEC光伏展如期而至。近两年光伏行情持续磨底,光伏人苦不堪言。低迷的市场环境使得整个行业也陷入低压的氛围之中。然而从SNEC展会现场来看,虽然不比过去两年,热闹程度依然不低。尤其是龙头企业的展台依旧是人气爆棚,寒意逼人的市场行情似乎并没有影响光伏人的出来“见朋友”、“会对手”
2025 04-02
目前TOPCon 凭什么碾压 BC,主导光伏市场?
[list:subtitle]
近日,部分地区在风光项目开发建设相关通知中提及,2025 年计划实施 2GW 左右光伏领跑计划,并要求组件转换效率达 24.2% 以上。此消息一经发布,便引发了业内广泛关注与讨论。不少业内人士指出,在当前光伏行业发展态势下,单纯强调组件的正面转换效率恐有不妥,应着重强调综合效率的价值,以此避免引发新一轮的 “内
2024 08-12
储能电池和动力电池有什么区别?
[list:subtitle]
储能电池和动力电池在多个方面存在区别,主要包括以下几点:1、应用场景不同• 储能电池:主要用于电力储存,如电网储能、工商业储能、家庭储能等,以平衡电力供需,提高能源利用效率和用能成本。• 动力电池:则专门用于为电动汽车、电动自行车、电动工具等移动设备提供动力。2、充放电特性• 储能电池:通常具有较低的充放
Al2O3背钝化是一种常用的背钝化方法。该方法通过在电池片背面形成一层氧化铝(Al2O3)薄膜来防止电荷的复合损失。氧化铝薄膜可以通过原子层沉积(ALD)等技术在电池片背面均匀地生长。该薄膜具有较高的电阻率和较低的导电性,能够有效地阻止电荷从电池片背面流失,从而提高电池片的光电转换效率。
SiNx背钝化是另一种常见的背钝化方法。该方法通过在电池片背面形成一层氮化硅(SiNx)薄膜来阻止电荷的复合损失。氮化硅薄膜可以通过化学气相沉积(PECVD)等技术在电池片背面生长。该薄膜具有较高的电阻率和较低的导电性,能够有效地阻挡电荷从电池片背面流失,提高电池片的光电转换效率。
除了上述两种方法外,还有一些其他的背钝化技术,如Al2O3/SiNx多层结构背钝化、全反射背钝化等。这些技术通过不同的手段,在电池片背面形成一层具有较高电阻率和较低导电性的材料层,阻止电荷的复合损失,提高光电转换效率。
2024 06-19
电池片为什么要钝化!
[list:subtitle]
电池片背钝化是一种用来减少电池片背面电荷复合损失的技术,电池片表面存在大量缺陷,会与少数载流子发生复合,导致载流子损失,降低电池性能。通过在电池片表面形成钝化层,可以减少表面缺陷,从而降低表面复合速率,提高电池的少子寿命和开路电压,显著提高太阳能电池的转化效率。下面详细介绍电池片背钝化的原理。太阳能
2024 04-24
常见的PCB 制造缺陷
[list:subtitle]
介绍PCB(即印刷电路板)对于大多数现代硬件至关重要。然而,它们在制造过程中很容易出现缺陷。这些缺陷可能会导致 PCB 令人失望,并对产品执行和稳定的质量产生不利影响。这本影响深远的指南分析了最主要的 PCB 制造沙漠,调查了其潜在驱动因素,并针对有限的机会给出了可能的答案。PCB 由层叠在绝缘基板上的导电铜迹线组成
2025 09-15
为什么说AI发展的尽头是工业?
[list:subtitle]
第一次工业革命,人类迈入了蒸汽时代,摆脱了对风、水、畜等自然力的依赖,学会了规模化生产。第二次工业革命,人类迈入了电气时代,钢铁巨兽昼夜不停的咆哮着,改造了人类社会的方方面面。第三次工业革命,人类迈入了信息时代,工业和数据开始密不可分,在各类高精尖产品之外,人类还创造出了“虚拟世界”。身处21世纪,如
2024 03-29
锂电池内阻那些事
[list:subtitle]
内阻是锂电池在工作时,电流流过电池内部受到的阻力。根据测试方法,可以分为交流内阻和直流内阻。电池内阻是鉴定锂离子电池质量好坏的一项重要参数,电池内阻大,会产生大量焦耳热引起电池温度升高,导致电池放电工作电压降低,放电时间缩短,对电池性能、寿命等造成严重影响。在验证各因素对锂电池的电化学性能试验中,内